Postmortem brain levels of urate and precursors in Parkinson's disease and related disorders.
نویسندگان
چکیده
BACKGROUND Increasing evidence suggests that urate may play an important role in neurodegenerative disease. In Parkinson's disease (PD) higher, but still normal, levels of blood and cerebrospinal fluid urate have been associated with a lower rate of disease progression. OBJECTIVE We explored the hypothesis that lower levels of urate and its purine precursors in brain may be associated with PD and related neurodegenerative disorders, including Alzheimer's disease (AD) and Lewy body dementia (DLB). METHODS Human postmortem brain tissues were obtained from PD, AD, and DLB patients and non-neurodegenerative disease controls. We measured urate and other purine pathway analytes in the frontal and temporal cortex, striatum, and cerebellum, using high-performance liquid chromatography with electrochemical and ultraviolet detection. RESULTS Age was well-matched among groups. Mean postmortem interval for samples was 16.3 ± 9.9 h. Urate levels in cortical and striatal tissue trended lower in PD and AD compared to controls in males only. These findings correlated with increased urate in male versus female control tissues. By contrast, in DLB urate levels were significantly elevated relative to PD and AD. Measurement of urate precursors suggested a decrease in xanthine in PD compared to AD in females only, and relative increases in inosine and adenosine in DLB and AD samples among males. Xanthine and hypoxanthine were more concentrated in striatal tissue than in other brain regions. CONCLUSIONS Though limited in sample size, these findings lend support to the inverse association between urate levels and PD, as well as possibly AD. The finding of increased urate in DLB brain tissue is novel and warrants further study.
منابع مشابه
Effect of ellagic acid on thiol levels in different brain tissue in an animal model of Parkinson's disease
Background & Aim: Parkinson's disease (PD) can be created with loss of dopaminergic substantial nigra neurons which is widely associated with oxidative stress and reduced glutathione (GSH), as the most important and abundant thiol in tissues and one of the antioxidant defense, is one of the earliest biochemical events related to Parkinson's and consumption of antioxidants has a protective effec...
متن کاملEffect of ellagic acid on thiol levels in different brain tissue in an animal model of Parkinson's disease
Background & Aim: Parkinson's disease (PD) can be created with loss of dopaminergic substantial nigra neurons which is widely associated with oxidative stress and reduced glutathione (GSH), as the most important and abundant thiol in tissues and one of the antioxidant defense, is one of the earliest biochemical events related to Parkinson's and consumption of antioxidants has a protective effec...
متن کاملP 124: Decrease Signs Parkinson`s Disease with DOPAMINE in Apple
After Alzheimer's disease, Parkinson's disease is the most common nerve-damaging disease. Parkinson's is a progressive and chronic disease where cells secrete dopamine-cut black flesh and in the absence of dopamine in the brain destroyed the irregular body movements. Man eats the food that causes the formation of the neurotransmitters. Tthree neurotransmitters: dopamine, serotonin, norepinephri...
متن کاملInvestigating effect of chamomile hydroalcoholic extract on movement disorders in the animal model of Parkinson's disease
Background & Aim:Parkinson's disease (PD) is a kind of disorder in the nervous system, which is characterized with multiple movement disorders. Factors such as oxidative stress are the most important causes for the degeneration of dopaminergic neurons in the substantia nigra and occurrence of Parkinson's disease. Thus, medications that have antioxidant functions could be an int...
متن کاملInvestigating effect of chamomile hydroalcoholic extract on movement disorders in the animal model of Parkinson's disease
Background & Aim:Parkinson's disease (PD) is a kind of disorder in the nervous system, which is characterized with multiple movement disorders. Factors such as oxidative stress are the most important causes for the degeneration of dopaminergic neurons in the substantia nigra and occurrence of Parkinson's disease. Thus, medications that have antioxidant functions could be an int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuro-degenerative diseases
دوره 12 4 شماره
صفحات -
تاریخ انتشار 2013